Contents
π Foundations of GenAI
What is Generative AI?
History of Generative AI
Difference: Generative vs. Discriminative Models
Key Concepts: Tokens, Prompts, Context Window
Prompt Engineering (Basics)
π§ Models & Architectures
Transformer Architecture (Simplified)
GPT vs BERT vs T5
Diffusion Models (for Images)
Multimodal LLMs (text + image/audio/video)
Open-Source vs Closed Models
π οΈ Model Providers (Expand your existing)
Mistral
Cohere
Meta (LLaMA models)
xAI (Grok)
Google DeepMind (Gemini's origin)
π§° Ecosystem Tools & Frameworks
Prompt Layer
LlamaIndex (formerly GPT Index)
Haystack
RAG (Retrieval-Augmented Generation)
Guardrails AI (Output validation)
ReAct and CoT Prompting
π§ Memory & Agents
Agent Memory (short-term vs long-term)
Tool Use and Function Calling
Agentic Workflows (vs Pipelines)
LangChain Agents vs AutoGen Agents
State Machines vs Event-Driven Agents
π¦ Infrastructure & Storage
Vector DBs: FAISS, Qdrant, Weaviate, Pinecone, Milvus
Embedding Models: OpenAI, HuggingFace, Cohere, BAAI
Rerankers & Hybrid Search (BM25 + Embeddings)
Chunking Strategies for Documents
π‘οΈ Ethics & Limitations
AI Hallucinations
Bias in LLMs
Data Privacy and Security
Copyright and Content Generation
Human-in-the-Loop (HITL)
βοΈ Use Cases & Applications
GenAI for Education
GenAI for LegalTech
GenAI in Healthcare
Chatbots vs Knowledge Assistants
Content Generation (Text, Code, Images)
π§ͺ Evaluation & Testing
Prompt Testing
LLM Benchmarks (HELM, MMLU, TruthfulQA)
Guardrails for Output Control
Evaluating Relevance, Coherence, Safety
π Trends & Future
Synthetic Data Generation
Fine-Tuning vs PEFT vs LoRA
Tiny LLMs (for Edge Devices)
AI Agents + Robotics
Self-Improving AI Systems
Last updated