Python Built-in Functions
1. What are Built-in Functions
Built-in functions are pre-defined functions provided by Python that are always available without importing any module.
print("Hello World")These functions enhance productivity and reduce the need for custom implementations.
Examples:
print(), len(), type(), sum(), min(), max(), sorted()
2. Type Inspection Functions
x = 10
print(type(x)) # <class 'int'>
print(isinstance(x, int)) # TrueUsed for checking data types at runtime.
3. Length and Size Functions
data = [1, 2, 3, 4]
print(len(data)) # 4len() returns the number of elements in a collection.
4. Mathematical Built-ins
Frequently used for numeric computations.
5. Conversion Functions
Transforms data across types.
6. Input Function
Reads user input from the console.
7. Sequence Processing Functions
Common functions:
sorted()reversed()enumerate()zip()
8. Range and Iteration Functions
Produces an iterable sequence efficiently.
9. Functional Programming Built-ins
Also includes:
filter()map()reduce()(via functools)
10. Enterprise Example: Data Normalization
Demonstrates combined usage of:
sum()len()round()
Common Python Built-in Functions Overview
print()
Display output
len()
Length of object
type()
Check type
sum()
Total of elements
min()
Minimum value
max()
Maximum value
sorted()
Sort items
input()
User input
abs()
Absolute value
round()
Rounding numbers
Categorized Built-in Functions
🔹 Conversion
int(), float(), str(), bool(), list(), tuple(), set(), dict()
🔹 Math & Logic
sum(), min(), max(), pow(), abs(), round()
🔹 Iteration
range(), enumerate(), zip(), reversed()
🔹 Data Inspection
type(), id(), isinstance(), dir(), help()
Best Practices
Prefer built-ins over custom logic where applicable
Combine built-ins for efficient pipelines
Avoid reinventing core operations
Use built-ins to improve readability
Validate inputs before applying built-ins
Common Mistakes
Overusing manual loops instead of built-ins
Shadowing built-in names (e.g.,
list = [])Forgetting return types
Misusing conversion functions
Enterprise Relevance
Built-in functions power:
Core business logic
Data processing pipelines
API transformations
AI data pre-processing
High-performance computations
They contribute to:
Faster development
Clean architecture
Optimized performance
Readable codebase
Reduced errors
Last updated