Theme1
100 Days of GenAI Challenge: LinkedIn Showcase Edition
Theme:
From Python Basics to Building Agentic AI Workflows
Phase 1: Foundation Setup (Days 1–10)
Day 1: Install Miniconda/Anaconda
Day 2: Create a Conda Environment and install Python 3.11
Day 3: Basics of Python: Variables, Data Types
Day 4: Basics of Python: Functions and Loops
Day 5: Basics of Python: Object-Oriented Programming (OOP)
Day 6: Git and GitHub Setup – Create your first Repository
Day 7: Jupyter Notebook Setup
Day 8: Learn basic Markdown (for documentation)
Day 9: Install VSCode + Python Extension
Day 10: Post your environment setup screenshots and a simple Hello World Notebook on LinkedIn
Phase 2: Machine Learning Basics (Days 11–20)
Day 11: Install scikit-learn and pandas
Day 12: Build your first Linear Regression Model
Day 13: Classification with Decision Trees
Day 14: Data Preprocessing Basics (missing values, scaling)
Day 15: Train-Test Split + Cross-Validation Basics
Day 16: Introduction to Huggingface Datasets
Day 17: Simple Sentiment Analysis Dataset (IMDB)
Day 18: Train a basic Random Forest on a dataset
Day 19: Share your ML Model performance on LinkedIn
Day 20: Refactor your code into clean scripts (Python modules)
Phase 3: GenAI Core Skills (Days 21–40)
Day 21: Introduction to LLMs (basic theory)
Day 22: Install OpenAI API, complete your first text generation
Day 23: Temperature, Top_p, Max Tokens explained
Day 24: Build a simple Prompt Engineering app (input box -> output)
Day 25: Few-shot Prompting Examples
Day 26: Chain of Thought (CoT) Prompting
Day 27: Zero-shot, One-shot, Few-shot case studies
Day 28: Introduction to Huggingface Transformers
Day 29: Load a pretrained LLM like GPT2 locally
Day 30: Build a simple chatbot using Huggingface Pipeline
Day 31: Introduction to Embeddings
Day 32: Generate sentence embeddings with OpenAI API
Day 33: Install FAISS locally
Day 34: Create your first RAG (Retrieval Augmented Generation)
Day 35: Document and post your RAG mini-project
Day 36: Load PDF and generate embeddings (using unstructured/llamaindex)
Day 37: Compare local LLM vs OpenAI LLM (output quality)
Day 38: Try Claude or Gemini APIs
Day 39: Create an evaluation sheet comparing models
Day 40: Write a LinkedIn post: "My First Month in GenAI: Learnings"
Phase 4: Advanced GenAI Skills (Days 41–70)
Day 41: LangChain Basics
Day 42: Build a basic Chain (prompt -> LLM -> output)
Day 43: Multi-step Chains (sequential chains)
Day 44: Memory in LangChain
Day 45: Custom Tools in LangChain
Day 46: LangChain Agents Introduction
Day 47: Tool Usage with LLMs (like Search, Calculator)
Day 48: Build your first LangChain Agent
Day 49: Learn what VectorDBs are: FAISS, Chroma, Qdrant
Day 50: Connect LangChain with FAISS Vectorstore
Day 51: Building a Personal Document QA Bot
Day 52: Autonomous Agents Introduction (BabyAGI, AutoGPT)
Day 53: Install and run a local BabyAGI variant
Day 54: Understand Task Decomposition in Agents
Day 55: Self-Refinement (Reflection) Concepts
Day 56: Prompt Engineering for Agents
Day 57: Experiment with goal-driven Agents
Day 58: Understand Function Calling in OpenAI API
Day 59: Create a Function Calling Demo (dynamic JSON outputs)
Day 60: LinkedIn Post: "How I built my first GenAI Agent"
Phase 5: Professional Deployment Skills (Days 71–90)
Day 71: Docker Introduction for AI apps
Day 72: Dockerize a basic RAG App
Day 73: Introduction to FastAPI
Day 74: Create a simple GenAI API using FastAPI
Day 75: Serve your RAG bot as a FastAPI app
Day 76: Prefect Basics (flows and tasks)
Day 77: Automate a small GenAI job with Prefect
Day 78: Understanding Work Pools and Deployments
Day 79: Deployment to Render/EC2/any free tier
Day 80: LinkedIn Post: “How I Deployed My GenAI App”
Phase 6: Agentic Workflows & MCP, A2A (Days 91–100)
Day 91: Introduction to MCP (Model Context Protocol)
Day 92: Read and understand ModelContextProtocol SDK
Day 93: Build a simple MCP Server (Stdio Transport)
Day 94: Write tools/functions for your own MCP Agent
Day 95: Understand A2A (Agent-to-Agent) communication
Day 96: Build a simple 2-agent system (one writer, one editor)
Day 97: Add memory context to agents
Day 98: Simulate a Multi-Agent Workflow: Researcher -> Writer -> Editor -> Publisher
Day 99: Polish your MCP Project + GitHub README
Day 100: Final LinkedIn Post:
"From Python to Autonomous Agent Workflows — My 100 Days GenAI Journey"
LinkedIn Post Template Suggestions:
Weekly summary posts (Day 7, Day 14, Day 21, etc.)
Mini-project showcases with screenshots
#100DaysOfGenAIChallenge hashtag
Tagging new connections, peers, and GenAI leaders
Last updated