Theme3

πŸš€ 100 Days of Building Autonomous AI Systems


Days 1–10: Python + Environment Setup

  • Day 1: Install Miniconda, Python 3.11

  • Day 2: Create Conda environments, install basic libraries (pandas, requests)

  • Day 3: Setup Jupyter Notebook + VSCode

  • Day 4: Python Basics: Variables, Loops, Functions

  • Day 5: Git and GitHub Setup: First Commit

  • Day 6: Markdown Basics + GitHub Readmes

  • Day 7: Install Docker and Docker Compose

  • Day 8: Create your first simple Dockerfile (Python Hello World)

  • Day 9: Basic REST APIs using FastAPI

  • Day 10: LinkedIn Post: "Setting up for 100 Days of Autonomous AI πŸš€"


Days 11–20: Core Machine Learning and LLM APIs

  • Day 11: Train/Test Split + Linear Regression model (scikit-learn)

  • Day 12: Intro to Transformers (Huggingface basics)

  • Day 13: Use OpenAI API for Text Completion

  • Day 14: Understand Embeddings: Generate Sentence Embeddings

  • Day 15: Build a basic FAISS index and search over it

  • Day 16: Document chunking with LangChain TextSplitter

  • Day 17: Create RAG (Retrieval-Augmented Generation) system

  • Day 18: Build a FastAPI endpoint serving your RAG

  • Day 19: Dockerize your FastAPI+RAG app

  • Day 20: Post your first GenAI API on LinkedIn


Days 21–30: LangChain and Advanced RAG

  • Day 21: LangChain Prompt Templates

  • Day 22: Chains: SequentialChain and LLMChain

  • Day 23: Build a Memory Chatbot (ConversationBufferMemory)

  • Day 24: Tool Creation in LangChain

  • Day 25: Building a LangChain Agent using Tools

  • Day 26: LangChain + FAISS end-to-end Pipeline

  • Day 27: Streamlit UI for your chatbot

  • Day 28: Vector Store Alternatives: Chroma, Qdrant

  • Day 29: Deploy LangChain RAG on Render or Railway

  • Day 30: LinkedIn Post: "Building Smarter GenAI Apps with LangChain"


Days 31–40: Prefect and Workflow Automation

  • Day 31: Install Prefect, create your first Flow

  • Day 32: Build a Scheduled Flow (daily document updater)

  • Day 33: Prefect Work Pools and Deployments Basics

  • Day 34: Handling Failures and Retries in Prefect

  • Day 35: Create a GenAI Content Pipeline (Extract -> Summarize -> Post)

  • Day 36: Prefect Deployment with Docker

  • Day 37: Environment Variables and Secrets in Prefect

  • Day 38: Prefect Orchestration of GenAI Chains

  • Day 39: Prefect Monitoring: Logs, Alerts

  • Day 40: LinkedIn Post: "Orchestrating GenAI Workflows with Prefect"


Days 41–50: No-code + Low-code Automation with n8n

  • Day 41: Install n8n locally (Docker)

  • Day 42: Create your first Workflow in n8n

  • Day 43: Automate LinkedIn Posting using n8n + APIs

  • Day 44: Build an OpenAI-based Email Summarizer in n8n

  • Day 45: Use Webhooks to trigger LLM Responses

  • Day 46: Connect Vector DB Search into n8n Workflows

  • Day 47: Multi-step Approval Flows (Human-in-Loop)

  • Day 48: n8n + FastAPI integration (Trigger API calls)

  • Day 49: n8n Error Handling + Retry Strategies

  • Day 50: LinkedIn Post: "My No-Code GenAI Apps using n8n"


Days 51–60: AutoGen Framework

  • Day 51: Introduction to AutoGen by Microsoft

  • Day 52: Install AutoGen, understand Agent concept

  • Day 53: Build simple AutoGen Assistant (input -> task -> output)

  • Day 54: Learn how to define UserProxyAgents and AssistantAgents

  • Day 55: Create a 2-Agent Collaboration (Research -> Summarize)

  • Day 56: Customize message passing

  • Day 57: AutoGen Memory Management

  • Day 58: Build a "Problem Solver" using AutoGen

  • Day 59: Test concurrent multi-agent coordination

  • Day 60: LinkedIn Post: "Exploring Microsoft AutoGen for Multi-Agent Systems"


Days 61–70: Multi-Agent Architectures

  • Day 61: Research: What is A2A (Agent to Agent Communication)?

  • Day 62: Design: How to pass context from Agent 1 -> Agent 2 -> Agent 3

  • Day 63: Build a Research Agent + Writing Agent team

  • Day 64: Add an Editor Agent to review outputs

  • Day 65: Chain agents using explicit task delegation

  • Day 66: Error handling between multiple agents

  • Day 67: Autonomous Planning Agent (Task Prioritization)

  • Day 68: Dynamic role allocation in Agents

  • Day 69: Logging and Monitoring Multi-Agent Flows

  • Day 70: Publish: "Building Multi-Agent AI Systems πŸš€"


Days 71–80: Deep Dive into MCP (Model Context Protocol)

  • Day 71: Understand why MCP was created (problems with Function Calling)

  • Day 72: Install modelcontextprotocol SDK (Python)

  • Day 73: Build a simple MCP Server (StdioTransport)

  • Day 74: Define your Toolset (document reader, searcher, summarizer)

  • Day 75: Connect LLM to MCP Server

  • Day 76: Handle Tool Invocations with rich context

  • Day 77: Extend to multiple tools

  • Day 78: Create a Workflow Agent using MCP

  • Day 79: Deploy your MCP server via Docker

  • Day 80: LinkedIn Post: "Using MCP to Build Smarter Agents!"


Days 81–90: Real Autonomous Projects

  • Day 81: Design a Full Multi-Agent System: (Researcher -> Writer -> Editor -> Publisher)

  • Day 82: Use AutoGen Agents with MCP Tools

  • Day 83: Set up n8n as the Orchestration Layer

  • Day 84: FastAPI Endpoints to trigger Workflows

  • Day 85: Vector Search for context retrieval

  • Day 86: Prefect Flows for retries, failures, notifications

  • Day 87: Make agents learn from feedback (Self-Improvement)

  • Day 88: Deploy your full Autonomous System

  • Day 89: Monitor Logs, Retries, Failures via Prefect and n8n

  • Day 90: Post: "Building and Deploying an Autonomous Agentic System"


Days 91–100: Grand Projects and Certifications

  • Day 91: Brainstorm your Final Grand Project idea

  • Day 92: Project Setup (GitHub Repo + Project Plan)

  • Day 93: Create Agents (minimum 3 roles)

  • Day 94: Create APIs, MCP Server, and Connect them

  • Day 95: Test A2A Messaging + Dynamic Delegation

  • Day 96: Build a Leaderboard or Scoring Agent

  • Day 97: Deploy all services with Docker Compose

  • Day 98: Final Testing and Debugging

  • Day 99: Polish README, Documentation, Deployment Guide

  • Day 100: GRAND POST on LinkedIn:

"From Zero to Building Autonomous AI Systems β€” My 100 Days Journey πŸš€"


🌟 This version summary:

Phase
Focus
Outputs

1–20

Python + GenAI Core

RAG App

21–40

LangChain + Prefect

Workflow APIs

41–60

n8n + AutoGen

Low-code Automations, Multi-Agents

61–80

MCP + A2A

Build Autonomous Teams

81–100

Full Project

End-to-end System Deployment

Last updated