124. Batch Processing with itertools.islice

Here are 10 Python code snippets demonstrating how to use itertools.islice for batch processing and handling data in chunks efficiently:

1. Basic Usage of itertools.islice

Copy

import itertools

# Sample data
data = range(1, 11)

# Slice the data in chunks
chunk_size = 3
sliced_data = itertools.islice(data, 0, chunk_size)

print(list(sliced_data))  # Output: [1, 2, 3]

2. Batch Processing with itertools.islice

Copy

import itertools

# Sample data
data = range(1, 11)

# Batch processing in chunks of 4
chunk_size = 4
for i in range(0, len(data), chunk_size):
    batch = itertools.islice(data, i, i + chunk_size)
    print(list(batch))  # Output: [1, 2, 3, 4], [5, 6, 7, 8], [9, 10]

3. Processing Large File in Chunks

Copy


4. Using islice for Infinite Data Streams

Copy


5. Iterating Over a List in Chunks Using itertools.islice

Copy


6. Skipping Elements with itertools.islice

Copy


7. Batch Processing Data with Padding

Copy


8. Reading Large Data in Fixed-Size Chunks

Copy


9. Sliding Window Technique with itertools.islice

Copy


10. Using islice to Limit Data from an Infinite Generator

Copy


These examples show how itertools.islice can be effectively used to process large datasets, files, or streams in chunks, without needing to load everything into memory at once, which helps in batch processing and improving memory efficiency.

Last updated