124. Batch Processing with itertools.islice
Here are 10 Python code snippets demonstrating how to use itertools.islice for batch processing and handling data in chunks efficiently:
1. Basic Usage of itertools.islice
Copy
import itertools
# Sample data
data = range(1, 11)
# Slice the data in chunks
chunk_size = 3
sliced_data = itertools.islice(data, 0, chunk_size)
print(list(sliced_data)) # Output: [1, 2, 3]2. Batch Processing with itertools.islice
Copy
import itertools
# Sample data
data = range(1, 11)
# Batch processing in chunks of 4
chunk_size = 4
for i in range(0, len(data), chunk_size):
batch = itertools.islice(data, i, i + chunk_size)
print(list(batch)) # Output: [1, 2, 3, 4], [5, 6, 7, 8], [9, 10]3. Processing Large File in Chunks
Copy
4. Using islice for Infinite Data Streams
Copy
5. Iterating Over a List in Chunks Using itertools.islice
Copy
6. Skipping Elements with itertools.islice
Copy
7. Batch Processing Data with Padding
Copy
8. Reading Large Data in Fixed-Size Chunks
Copy
9. Sliding Window Technique with itertools.islice
Copy
10. Using islice to Limit Data from an Infinite Generator
Copy
These examples show how itertools.islice can be effectively used to process large datasets, files, or streams in chunks, without needing to load everything into memory at once, which helps in batch processing and improving memory efficiency.
Last updated