30. Multiprocessing Module
This Python snippets demonstrating the use of the multiprocessing module to run parallel processes for CPU-bound tasks:
1. Basic Multiprocessing Example
Copy
from multiprocessing import Process
def print_numbers():
for i in range(5):
print(f"Process: {i}")
if __name__ == "__main__":
process = Process(target=print_numbers)
process.start()
process.join()2. Passing Arguments to a Process
Copy
from multiprocessing import Process
def print_range(start, end):
for i in range(start, end):
print(f"Range {start}-{end}: {i}")
if __name__ == "__main__":
process = Process(target=print_range, args=(1, 6))
process.start()
process.join()3. Using a Pool of Processes
Copy
4. Process Synchronization with Lock
Copy
5. Sharing Data with Value and Array
Copy
6. Using a Queue for Process Communication
Copy
7. Using Manager for Shared State
Copy
8. Using Pool.apply_async for Asynchronous Processing
Copy
9. Using Process with Daemon
Copy
10. Using Barrier for Synchronization
Copy
These examples cover the basics of multiprocessing, including communication, synchronization, data sharing, process pools, and daemon processes.
Last updated